-->

Type something and hit enter

Pages

Singapore Investment


On


Recently I have purchased a Dell XPS 8930 desktop computer which comes with an ordinary 1 TB SATA hard disk, paired with a 16GB Intel Optane memory card.




As advertised by Intel, "the Intel Optane memory is a smart, adaptable system accelerator for PCs with at least a 7th Generation Intel Core processor and a hard disk drive. It provides uncompromising system responsiveness for large capacity storage drives, making everything you do fast, smooth and easy."

Intel has put up a short video to explain what is Optane memory about and how its Smart System Acceleration works, as below:


The main purpose of this Optane memory is to boost up the performance of ordinary SATA hard disk, which capacity is generally much higher than SSD and price is much more cheaper than SSD, so that the data access time of the Intel Optane accelerated hard disk can be comparably as fast as SSD.

I have this Dell XPS 8930 desktop with 1 TB Optane accelerated hard disk as its storage, running on Intel Core i5-8400 CPU and 8 GB memory. I also have a Dell Inspiron 5370 laptop with 256 GB SSD as its storage, running on Intel Core i7-8550U CPU and 8 GB memory. Both of them are running on MS Windows 10 operating system.

In my personal experience of using this desktop with Optane accelerated SATA hard disk which has storage capacity 4 times larger than my laptop, its boot up time is almost instantaneous and faster than my laptop. This is really amazing.

Well, to be fair, the Intel i5-8400 Coffee Lake processor in my desktop with 6 cores 6 threads processing power, is having a higher performance benchmark than the Intel i7-8550U Kabe Lake R processor in my laptop with 4 cores 8 threads processing power. This would probably explain why the desktop boot up time is faster than the laptop. However, without the acceleration of Optane memory, its boot up time with SATA hard disk will be much more slower.

As for the loading speed of applications in the desktop, and the speed of opening data files, it depends on whether they have already been cached in the Optane memory or not. I can feel that their loading speed is about the same with loading from SSD when they are cached, and is as slow as loading from SATA hard disk when they are not cached.

There is no mechanism for me to control which piece of data to be cached and which not to be cached. It is automatically determined by the Optane memory card itself. I can tell from experience that those frequently used one will stay in the cache and load up pretty fast.

Intel provides 2 options of Optane memory capacity, one is 16 GB and another is 32 GB. I think the 32 GB one is of better pick as it has double the caching capacity. However, the Dell XPS 8930 selling in Malaysia does not provide option for buyer to opt for 32 GB Optane memory, as only 16 GB Optane is available.

All in all, I am happy with the performance of this Intel Optane memory in my desktop computer. The only drawback is that current Intel Optane technology does not support RAID storage. It can only work with raw SATA hard disk.

I haven't have experience in using SSHD hybrid hard disk. Perhaps the experience is similar. I am also wondering what makes the different of using Optane memory with SATA hard disk from using SSHD.


http://voyager8.blogspot.my/2018/03/my-experience-sharing-of-using-intel.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+blogspot/nzRYh+%28The+8th+Voyager%29
Back to Top